Optimized Reactive Metabolite Trapping Assays: Increased Quality and Throughput Using High Resolution Mass Spectrometer, Stable Isotopes and Data Mining Software

Chenghong Zhang ⁽¹⁾, Jane R. Kenny ⁽¹⁾, Shugang Ma ⁽¹⁾, Marco M.A. Ruijken ⁽²⁾, Cornelis Hop ⁽¹⁾, and Cyrus Khojasteh ⁽¹⁾

- (1) Genentech, Inc., Drug Metabolism and Pharmacokinetics, South San Francisco, CA, USA
- (2) MsMetrix, Maarssen, The Netherlands

Reference (2)

Objective

- To increase throughput of trapping assays
- To maintain high quality of data
- To optimize LC-MS method
- To evaluate MsXelerator software to extract data of glutathione, cyanide or methoxylamine conjugates
- To implement upload sheet to report trapping data

Introduction

- Efforts to minimize bioactivation include evaluation of compounds early in the drug discovery stage.
- Efforts to increase the throughput and maintain high quality are needed.

MATERIALS AND METHODS

Incubation:

Human liver microsomes (1 mg/mL of protein) 20 µM of Troglitazone, Nefazodone and Verapamil Trapping agents (GSH, KCN and MeONH₂). Incubation at 37°C for 60 minutes Reactions were quenched using acetonitrile Centrifuge, blow down and reconstitution

LC Conditions:

UPLC: Accela or Shimazu

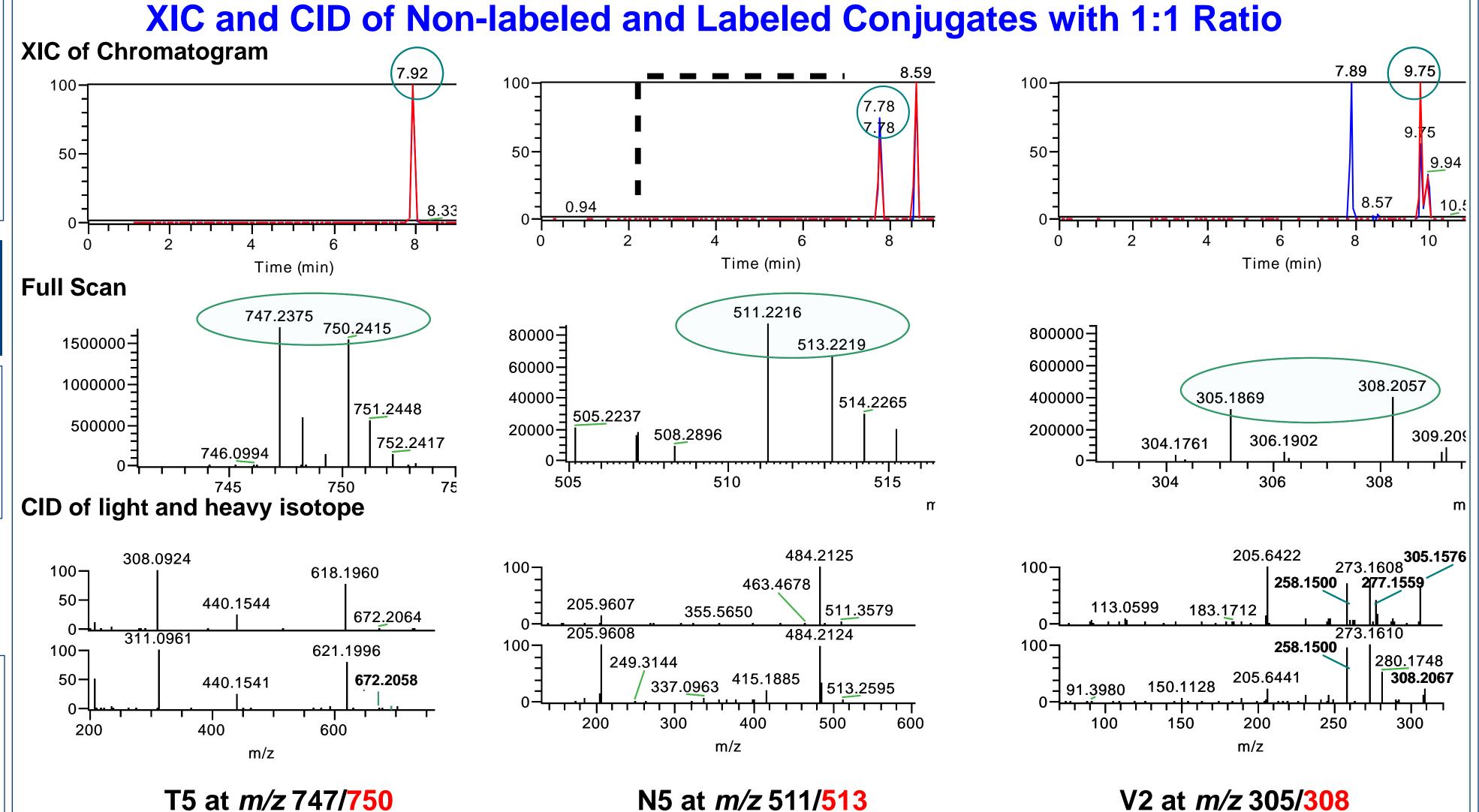
Mobile phases: A: water with 0.1% formic acid; B: acetonitrile with 0.1% formic acid. Column: Hypersil GOLD C18 100 x 2.1 mm, 1.9 μ

Conditions of Mass Spectrometer:

Methods of Mass Spectrometers: Orbitrap was operated in data dependent scans with a mass tag of 3 or 2 Da and MS³ triggered for neutral loss. See the table below for details.

MsXelerator Features: <u>iPeaks module</u> A module dedicated to Isotope Pattern Recognition and quantitation based on labeling. Several filters were applied during data processing:

Retention time filter: certain potential range of RT Mass accurate filter: please see the table below.

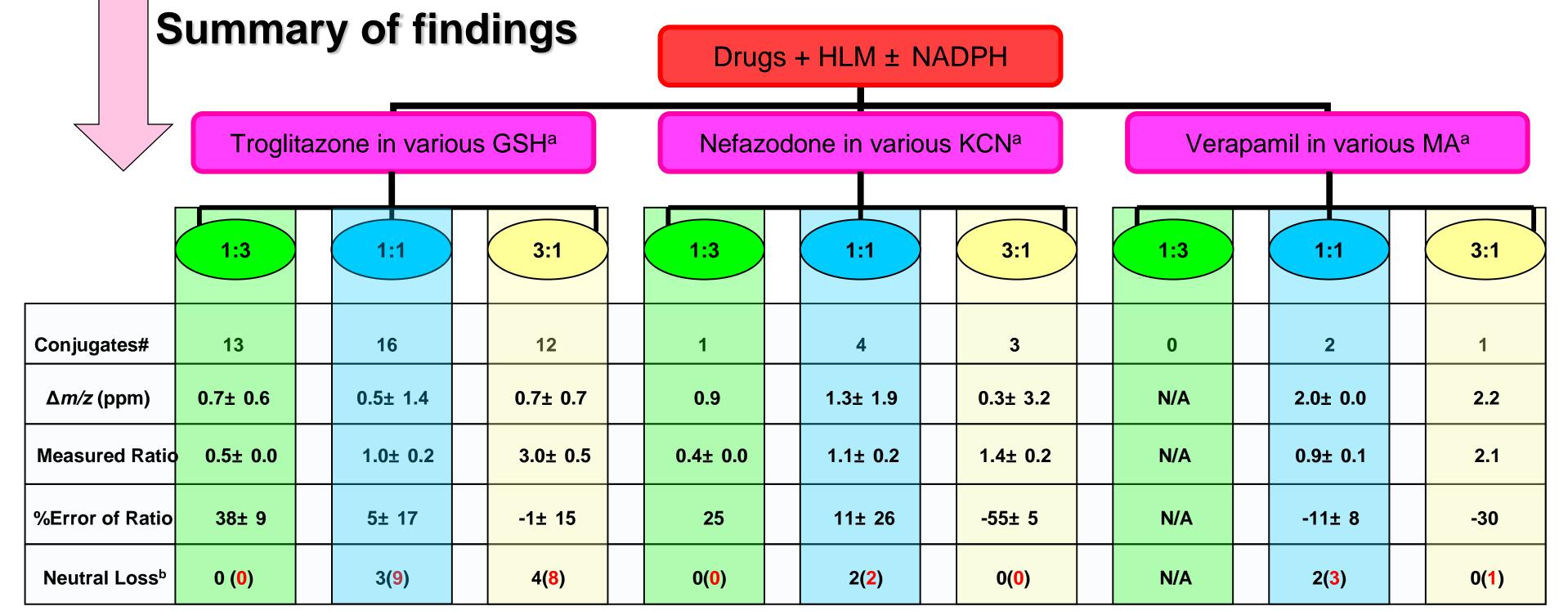

Ratio filter: 0.2~0.5 for 1:3; 0.7~1.3 for 1:1 and 2.0~4.0 for 3:1 of mixture of trapping

<u>Differential analysis filter</u>: remove peaks appeared in control samples Neutral loss filter: please see the table below.


Methodology Summary Table of Trapping Assays on Orbitrap

Trapping Agents	Stable Labeled	Ratio of Unlabled:Labeled Trapping Agents	Delta Mass	Neutral Loss					
GSH (1mM)	$^{13}\text{C}_2\&^{15}\text{N}$	1:3, 1:1 or 3:1	3.0037	75.0315 129.0420 307.0838					
KCN (1mM)	¹³ C ¹⁵ N		2.0004	27.0104 29.0107					
MeONH ₂ (0.5mM)	CD ₃ ONH ₂		3.0188	32.0257 35.0445					

Results and Discussions



Data Process with MsXelerator

Non-labeled and labeled conjugates extracted by MsXelerator

							Nefazodone CN-conjugates (<i>m/z</i> 300~600)						
	Troglitazone GSH Conjugates (<i>m/z</i> 700~800)					ID	Calculated	Proposed Conjugates	Observed (Mix of non-labeled and labeled KCN)				
ID		Proposed	Observed					Composition	1:3	1:1	3:1		
	Calculated	Conjugates	(Mix of non-labeled and labeled GSH)		N1*	399.2503	C21H30N6O2		Υ	Υ			
		Composition	1:3	1:1	3:1	N2*	415.2452	C21H30N6O3		Y	Y		
T1	721.2572	C33H44N4O10S2	Υ	Υ	Υ	N3	527.2168	C26H31CIN6O4	Υ	Y	Y		
T2	722.2412	C33H43N3O11S2		Υ		N4	511.2219	C26H31CIN6O3		Y			
T3	737.2521	C33H44N4O11S2	Y(2)	Υ	Υ		Total Numbers 1 4 3				3		
T4	738.2361	C33H43N3O12S2	Υ	Y	Y	*: The	These conjugates are under investigation.						
T5	747.2364	C34H42N4O11S2	Υ	Υ	Υ								
T6	749.2157	C33H40N4O12S2	Y(2)	Y(2)		ID	Verapamil MA-conjugates (<i>m/z</i> 200~400)						
T7	751.2313	C33H42N4O12S2	Y	Y	Y(2)		Proposed		Observed	Observed			
T8	753.2470	C33H44N4O12S2	Y(2)	Y(2)	Y		Calculated Conjugates (Mix of non-labeled and labeled M			abeled MA)			
T9	763.2313	C34H42N4O12S2	Y(2)	Y(3)	Y(3)			Composition	1:3	1:1	3:1		
T10	781.2419	C34H44N4O13S2		Y	Υ	V1	291.1703	C16H22N2O3		Υ			
T11	797.2368	C34H44N4O14S2	Υ	Y(2)	Υ	V2	305.1860	C17H24N2O3		Υ	Υ		
Total Numbers			13	16	12		Total Nu	umbers	0	2	1		

a: Only non-labeled information has been reported here except the total numbers of neutral loss (in red). b: We includes neutral loss for non-labeled conjugates (in black), and the sum of neutral loss for non-labeled and labeled conjugates (in red).

Discussions

- More conjugates were detected for 1:1 than 1:3 or 3:1 of non-labeled:labeled trapping agents.
- ≥ 16 pairs of GSH conjugates of troglitazone in HLM incubations were detected, in addition to sodium or potassium adducts (not presented).
- 4 pairs of CN-conjugates of nefazodone in HLM incubations were detected, where the most abundant ones at *m/z* 399 and 415 are under investigation.
- 2 pairs of MA-conjugates of verapamil in HLM incubations were detected.
- All of conjugates are within the acceptable range (<3 ppm).
- lons with neutral loss are considering diagnostic ions, especially with the isotopic patterns in our assays.
- The average errors of isotopic ratio for 1:1 of non-labeled:labeled trapping agents were <20%, but greater than 20% for 1:3 ratio and 3:1 ratio, especially for 3:1 ratio in KCN trapping. This is possibly due to chloride isotope contribution in Nefazodone. However, the effect of chloride isotope contribution in GSH trapping with troglitazone is minimal due to 3, not 2, mass unit difference.
- The more errors of isotopic ratio, the less filtering power of MsXelerator.

Conclusions

•Considering the cost saving of stable labeled GSH, a 3:1 ratio with three fold less labeled GSH is recommended, which will not sacrifice isotopic ratio accuracy and numbers of neutral loss, but with less of 25% GSH conjugates found comparing with 1:1 ratio.

- A 1:1 ratio is recommended for KCN and methoxylamine trapping.
- We were able to run 48 samples/compounds per week if necessary using this approach without loss of data quality.
- With this report format, we are able to upload data to central location, which helps us or chemists to compare with TDI data and figure out SAR.
- Eventually to help project team to find the best scaffold with less reactive metabolites and low TDI.

References

- 1. Zhengyin Yan et al. (2004) Anal Chem 76:6835-6847.
- Kelem Kassahun et al. (2001) Chem. Res. Toxicol. 14, 62-70.
 Ruben Alvarez-Sanchez et al. (2006) Chem. Res. Toxicol. 19, 1106-1116.
- 4. Justice N. Tettey et al. (2001) Chem. Res. Toxicol. 14, 965-974.

Acknowledgement

We would like to thank Qin Yue, Teresa Mulder and Peter Fan for ideas, technical support and discussions.